
CompSci715 Assignment 2, 2002

Ray Tracing & Curves and Surfaces
Due: 11:00am Thursday 22 August.

Getting Started

Download and unzip Ass2Source.zip from the web server. The contents of the folder RayTracer are for part A and the contents
of the folder TeapotLid are for part B of this assignment. The geometry folder is the usual geometry package, with a few slight
changes, and must be on the classpath for all stages of the assignment.

Indicated marks are out of a total of 45. This assignment contributes 6.5% to your final mark.

A. Ray Tracing

The folder RayTracer contains a simple ray
tracer written for 715. The top level of the
package hierarchy for the ray tracer contains
classes RayTracer and
ViewAndProjectionPanel. You aren’t meant to
understand these two classes in any detail.
RayTracer is the main program, responsible for
setting up and handling the rudimentary GUI,
shown in the figure on the right. When the Go
(New file) button is clicked, the user is provided
with a standard file browser window, though
which to select a scene description file *.wrl.
This scene file is defined in a subset of VRML
called miniVRML. The syntax of miniVRML is
attached in the Appendix 1 and there are a couple of simple examples included with the assignment. A parser (which you
certainly aren’t meant to understand) reads that file, constructs from it an object of type scene.RayTraceableScene, and calls its
rayTrace method. All being well, an image of the scene, as seen from the specified view, is drawn in the image panel on the
right half of the frame. To draw an image of the same scene file, but with a different view, use the Go (Old file) button.

Your job is to fill in some of the missing code as indicated in the steps below. All of the changes you will make should be in
the scene package or its sub-packages: look through that carefully and make sure you understand it before proceeding.
Appendix 2 contains the class diagrams for the scene and scene.illumination packages, plus an overview of the classes in each
package.

(a) Implement the firstObjectHit and the normalAtHit methods for the Sphere class. The firstObjectHit method returns
either this if the given ray hits the sphere, or null if it misses. Furthermore, it has to define the SceneNode
superclass’s instance variables tHit and ray – look carefully at the SceneNode and RayTraceableScene classes to see
why. If the firstObjectHit and the normalAtHit methods are correctly implemented, the program should then be able
to render scenes made from arbitrarily transformed diffuse spheres1. The provided files jellyBeans.wrl and
sillyHead.wrl are examples. Obtain a JPEG image of sillyHead.wrl, from any suitable viewpoint, called
sillyHead.jpg.
 [7 marks]

(b) Add shadow testing. Appendix 2 explains how I expect shadows to be handled. You’ll find that most of the
framework is there, but not the shadow testing code itself. When you have shadows working, generate a new version
of sillyHead.jpg from a viewpoint (0, -2, 10) to show the shadows of the nose and eyes.
 [5 marks]

1 If you find the speed of the ray tracer too painfully slow, you can speed up testing by shrinking the window before starting the ray trace.
This can give you a speed up factor of four or more. However, this shouldn’t be necessary if you have a reasonably fast machine and a
modern Java implementation -- on a 750MHz Pentium III with JDK1.3, the sillyFace image takes about 5 seconds to compute, including
shadows.

− 1 −

(c) Add reflection, again following the design described in Appendix 2. Since VRML does not include any way of
specifying mirror reflection, miniVRML has been extended by the addition of a mirrorColor field to the Material
node. Note that you will not be able to view a scene file with “mirrorColor” values in it with a standard VRML
viewer. For reflective objects, the normal Phong surface colour will be calculated first and then a reflection ray will
be traced. The colour along that ray will be multiplied by mirrorColor and added to the accumulated surface colour.
Refraction is not required. Generate an image file reflections.jpg from the test file shinyEyeballs.wrl, using a look-at
point of (0, 1.5, 0) and field of view of 15 degrees.
 [5 marks]

B. Curves and Surfaces

1. [4 marks] Prove that the cubic Hermite curve is invariant under translation, ie. if p1 and p4 are translated by a constant
vector v then every point p(t) of the original curve is translated by v.

2. [5 marks] Given three control points pi, pi+1, and pi+2, a quadratic uniform B-spline segment can be defined as the
quadratic Bezier curve that has control points (pi+pi+1)/2, pi+1 and (pi+1+pi+2)/2. Prove from this definition that
the equation for a quadratic B-spline can be written as

p(t) = t 2 t 1()Mbs

pi

pi+1

pi +2











 

where

Mbs = 1
2

1 −2 1
−2 2 0
1 1 0











 

 [This was part of a question from the 1993 07.415 Final Test]

3. [5 marks] A Catmull-Rom spline curve is a C1 continuous piecewise cubic with the following properties:

 • It directly interpolates (i.e., passes through) all its control points

 • Its parametric tangent vector at point pi is (pi+1 – pi-1)/2.

 From this definition, derive the Catmull-Rom basis matrix. You should get the answer:



















−
−

−−

=

0020
0101
1452
1331

2
1

CRM

4. (a) [4 marks] Prove that the quadratic Bezier with the following 2D homogeneous coordinate control points defines a 2D
quarter circle: (0,1,1), (√2/2, √2/2, √2/2), (1,0,1). Where is the centre and what is the radius? [Note: this is
algebraically tedious if done by hand. A package like Maple or Mathematica is strongly recommended.]

(b) [1 mark] Using the result from (a), what would be the control points and knots for the equivalent quadratic NURB
curve (still in 2D)?

5. [5 marks] The attached extract from Hill (Appendix A4.2) explains how the lid of the famous graphics teapot is
defined. Your job is to write a program TeapotLid.java that displays a wire-frame mesh of that lid (or, for fewer

− 2 −

marks, a quadrant of it), using Magician/OpenGL. You should use the WireframeHouseWithTrackball program
available from the 715 assignment web page as a startpoint. You must write the code to display the mesh yourself −
you are not allowed to use the NURBS-rendering capabilities provided in the OpenGL GLU package. To save you the
effort of retyping the vertices from Hill into your program, they are provided for you on the 715 assignment web page
as TeapotLidVertices.java.

The user should be able to rotate the image using the virtual trackball. There should be a single text field (or slider if
you want to be a bit more fancy) in the output window that allows control of the degree of subdivision of the mesh.
You should allow a variation from no subdivision (i.e. s and t take the values 0 and 1 only for each quadrant) through
to some suitably fine structure.

6. [4 marks] Extend your program TeapotLid.java to include a check box that, when checked, causes the teapot to be
displayed Gouraud shaded rather than by a wireframe. In order to do this you have to compute the vertex normals.
Explain in the written part of your answers to part B how you derived the vertex normals.

Handing In

Hand in via the departmental drop box the following files:
• Sphere.java
• Any java source files you modified in part A to implement shadows and reflections.
• The image files sillyHead.jpg and reflections.jpg (NOTE: The images must have a resolution of at least 300x300

pixels!)
• A text file ReadMe.txt (or ReadMe.doc or ReadMe.html) that indicates what stages you did and includes any other

useful information, like derivations of any formulae you used that are not in the notes, known bugs, etc.
• A Word document Ass2PartB.doc with the answers to part B of the assignment (ie. Answers to question 1-4 and an

explanation of how you derived the vertex normals for question 6). In order to typeset the equations you might want
to use the ‘Equation Editor’ or ‘MathType’. Since the typesetting of mathematical equations is rather tedious you
can also write your answers to these questions by hand and hand them in during the lectures.

• A single file TeapotLid.java containing the answers to questions 5 and 6 of part B (with any additional (local) classes
defined in that same file) – submit that file via the usual drop box.

− 3 −

Appendix 1. MiniVRML Syntax

// Grammar for a trivial subset of VRML97.

// Allows only a list of lights followed by a list of scene nodes.

// Lights can be either DirectionalLights [each with an optional

// ambient value (default is 0) and mandatory intensity and

// direction values (in that order) and nothing else] or

// PointLights (each with an optional ambient value and mandatory

// intensity and location values).

// SceneNodes are either TransformNodes or ShapeNodes.

// A TransformNode may have zero or one Translation, Rotation and Scaling

// specifiers (in that order).

// A ShapeNode has a mandatory Appearance and a mandatory Geometry.

// Appearance is a Material with a mandatory diffuseColor and optionally

// both a specularColor and a shininess (for a Phong material).

// An extra mirrorColor field has been added to support reflective ray tracing.
// Geometry is either a box (with mandatory size), an indexed face set,

// a Sphere, a Cylinder or a cone. Spheres, Cylinders and cones have optional radii

// values and cylinders and cones have an optional height. Boxes, spheres and

// cylinders are all centred at the origin.

// An indexed face set has mandatory "coord" and "coordIndex" fields.

VRMLScene ::= Lights SceneNodes

Lights ::= (Light)+

Light ::= DirectionalLight | PointLight

DirectionalLight ::= "DirectionalLight" "{" ["ambient" AmbientValue]

"intensity" IntensityValue "direction" DirectionValue "}"

PointLight ::= "PointLight" "{" ["ambient" AmbientValue]

"intensity" IntensityValue "location" LocationValue "}"

AmbientValue ::= FloatValue

IntensityValue ::= FloatValue

DirectionValue ::= Vec3f

AmbientValue ::= FloatValue

IntensityValue ::= FloatValue

DirectionValue ::= Vec3f

LocationValue ::= Vec3f

SceneNodes ::= (SceneNode)*

SceneNode ::= TransformNode | ShapeNode

TransformNode ::= "Transform" "{" [Translation] [Rotation] [Scaling]

"Children" "[" (SceneNode)* "]" "}"

Translation ::= "translation" Vec3f

Rotation ::= "rotation" Vec4f

Scaling ::= "scale" Vec3f

ShapeNode ::= "Shape" "{" "appearance" AppearanceNode "geometry" GeometryNode "}"

AppearanceNode ::= "Appearance" "{" "material" "Material" "{"

"diffuseColor" Vec3f ["specularColor" Vec3f "shininess" FloatValue]

["mirrorColor" Vec3f] ["transparency" FloatValue] "}" "}"

GeometryNode ::= BoxNode | IndexedFaceSetNode | SphereNode | CylinderNode | ConeNode

BoxNode ::= "Box" "{" "size" Vec3f "}"

IndexedFaceSetNode ::= "IndexedFaceSet" "{" "coord" "Coordinate" "{"

"point" "[" (FloatValue)* "]" "}"

"coordIndex" "[" (IntValue)* "]" "}"

SphereNode ::= "Sphere" "{" ["radius" FloatValue] "}"

CylinderNode ::= "Cylinder" "{" ["radius" FloatValue] ["height" FloatValue] "}"

ConeNode ::= "Cone" "{" ["bottomRadius" FloatValue] ["height" FloatValue] "}"

Vec3f ::= FloatValue FloatValue FloatValue

Vec4f ::= FloatValue FloatValue FloatValue FloatValue

FloatValue ::= <SFFloat>

IntValue ::= <SFInt>

− 4 −

Appendix 2. Notes on the Design of the Ray Tracer

The scene package

The figure below shows the design of the scene package, as generated by the blueJ IDE (http://www.bluej.org). The scene
package uses sub-packages basicTypes, which contains just the Colour and the Ray classes, and illumination, which will be
discussed shortly. A RayTraceableScene contains a scene graph and a vector of lights. Its rayTrace method is called to render
the scene onto an RTCanvas, which is just a canvas with a setPixel method. The ViewDescriptor class defines the eye point,
field of view and view up vector, and also contains a method to return the Ray from the eye through a given pixel on the image
plane.

The scene graph is defined by a single object of type SceneNode, which is the root of the scene graph (actually a tree) and will
usually be of the Group subclass. A Group object is a vector of SceneNodes, some of which may themselves be Group nodes
so that an n-ary tree structure is possible. The other subclasses of SceneNode are the various leaf nodes of the scene tree, each
representing a particular geometric shape.

Ray tracing a scene tree is performed by calling the firstObjectHit(ray) method on the root of the tree. This is defined to return
the leaf node that is the first object hit by the given ray, or null if the ray misses the scene graph. Other information relating to
the ray-object intersection, such as the distance along the ray, is cached within the leaf node, and can be queried by subsequent
method calls to the returned object.

− 5 −

The scene.illumination package

The figure below shows the design of the illumination sub-package of the scene package. This contains classes related to
illumination and surface reflectance properties. An instance of class Material defines the surface reflectance properties of a
leaf node in the scene graph. Essentially it just provides a method to return the colour of the material given a vector of lights, a
point on the surface, the surface normal at that point, and the direction vector from the surface point to the eye. The subclass
PhongMaterial implements the standard (sort of) reflection model, but with the addition of a “mirror colour” parameter, which
is used to implement mirror reflections.

A Light object is something that provides illumination. The illumination provided by a light is represented by a single
LightFlux object, which is just a record containing both a light ambient component and a directional component. The
PointLight and DirectionalLight subclasses of Light implement specific types of light.

Implementation of shadows proves a little tricky in this OO framework. The solution used is a little unorthodox: the light
returns a light flux object with a null directional component if the light source can’t actually see the point at which the
illumination is required. This fits naturally into the definition of the light’s illumination method, but does create a little
inelegance in implementation. The light needs to know the complete scene it is illuminating in order to determine whether or
not it can “see” the point of interest. Hence, the Light class includes a setScene method to tell the light the root of the scene
tree; this method is called by the constructor of the RayTraceableScene. When calculating the light flux at the point of interest,
the light has to cast a ray towards the point of interest and determine if there is anything in the way.

Implementation of reflection follows the same general design approach as shadows, with the same sort of inelegancies. In
order to return the colour at a point, the Material needs to reflect the vector to the eye about the surface normal, and cast a ray
back into the scene. This means telling all materials the entire scene – scene graph plus lights. So the Material class has a
setScene method that takes a RayTraceableScene as a parameter and the method just records that value. The constructor for a
RayTraceableScene ensures that method is called on all materials in the scene by using the setSceneOnAllMaterials method of
a SceneNode.

Enjoy!

− 6 −

	Getting Started
	A. Ray Tracing
	B. Curves and Surfaces
	Handing In

	Appendix 1. MiniVRML Syntax
	Appendix 2. Notes on the Design of the Ray Tracer
	The scene package
	The scene.illumination package

