
A Prototype Hotel Browsing System Using Java3D

D. Ball and M. Mirmehdi
Department of Computer Science

University of Bristol
Bristol BS8 1UB, England

Abstract

Java3D is an application-centred approach to building
3D worlds. We use Java3D and VRML to design a prototype
WWW-based 3D Hotel Browsing system. A Java3D scene
graph viewer was implemented to interactively explore ob-
jects in a virtual universe using models generated by a
commercial computer graphics suite and imported using a
VRML file loader. A special collision prevention mechansim
is also devised. This case study is reported here by review-
ing the current aspects of the prototype system.

1. Introduction

A number of hotel companies, travel agents and other
organisations currently have sites on the World Wide Web
(WWW) where guests can get information about hotel ac-
commodation. The aim of this project is to specify, design
and implement a WWW application which will allow guests
visiting such web sites to download 3D models of a hotel
and take a virtual tour of the facilities available. For exam-
ple, this may involve “walking” around a room or the sports
centre of the establishment.

The number of hotels marketing themselves on the
WWW is constantly increasing. A 3D hotel browser is one
way in which a hotel company can stand out from its com-
petitors on the Internet, and benefit its users at the same
time. The current WWW hotel services exploit some ad-
vantages of the Internet, but provide little more information
than a conventional printed brochure. This will only hold
the users’ attention for a short while. If, however, the user
could interact with the WWW site by getting inside the ho-
tel and walking around, then they are likely to be more in-
terested, stay longer at the site, and remember what they
have seen during their interesting (and fun) virtual tour.

There are many other immediate benefits of this sys-
tem. It could be adapted for use by Estate Agents to present
houses for sale or rent, or to allow prospective students to
view University campus accommodation. In fact, the pro-

totype system is a generic system and is called the Virtual
Tour System (VTS), and while it is tailored towards hotel
browsing, it is easily adaptable for other virtual tours.

Section 2 considers the tools used in this project. The
prototype system is described in Section 3 along with some
example images of the current state of development. Sec-
tion 8 discusses the tasks remaining to complete the project
in the near future.

2. The Tools

In this section we briefly review some (of the more im-
portant) software tools used in this project.

The Java3D Application Programmers Interface
(API) [1] has been specified as a new extension to the core
Java language which will support 3D computer graphics.
Although this API has been finally specified, a full im-
plementation is not yet available. The Computer Science
Department at the University of Bristol was provided with
a pre-alpha release of Java3D which has been used for
this project. Some of the features currently supported by
Java3D are: perspective or parallel projection, solid or
wireframe rendering, flat shading engine of polygons, and
multiple viewports (multiple views of the same scene) each
with its own set of parameters, and full 3D frustum and
screen level clipping.

Alias Wavefront [2] is a commercial graphics application
which can be used for rendering photo-realistic 3D models.
These models can be exported in a number of file formats
which can then be loaded and used by other 3D viewers.

VRML (Virtual Reality Modelling Language) [3, 4] can
be used to enable WWW browsers to download and display
3D models or virtual worlds. Models developed using Alias
Wavefront are exported using the VRML file format.

It may well be possible to use other technologies, how-
ever we used the resources immediately available to us, and
we believe it is the first time that VRML files are used in
Java3D. In fact, VRML and Java3D are an ideal combina-
tion for this project as the Java3D scene graph matches very
closely with the VRML structure.

1



3. System Overview

Naturally, robust design and performance issues are ap-
plicable here as in any software project. Also, human fac-
tors and general user requirements are imperative necessi-
ties. These were considered through liaison with the exter-
nal industrial partner. The basic architecture of the proto-
type system involves three major components:

� Hotel Database - the hotel database contains all the
information required for the hotel browser to gener-
ate virtual tours of featured hotels. This content com-
prises 3D model data and general hotel information.
The database is located on a single Web server host.
The database may contain references to external infor-
mation sources on the same site or at other locations
on the Internet.

� Hotel Browser - the hotel browser is a Web-based
application which accesses information from the
database via the WWW. It operates within a conven-
tional Web browser, integrating the virtual tour capa-
bility with existing WWW hotel information services.

� Database Editor - the database editor provides a fully
featured tool to create and edit all sections of the
database. Through a graphical user interface it allows
a skilled operator to build and modify hotel models
and configure other database information including se-
lection, insertion, deletion, and parameter editing. We
will not consider the Editor any further in this paper.

The system will consist of a single database and any
number of hotel browsers. A hotel browser will interact
with its user through a Java3D interface running in a WWW
browser. Figure 1 illustrates the three main components in
the prototype system.

4. Hotel Database

The database provides a description of a closed ho-
tel universe (Figure 2). It consists of a hierarchy of ho-
tel description objects. There are four types of hotel ob-
jects: Hotel Group, Hotel, Room, and Feature. Each object
has a number of properties and the following are common
amongst them: Name, Description, and References (to re-
lated WWW Resources).

A Hotel Group object collects together one or more Ho-
tel objects and has the aforementioned properties only. A
Hotel Object collects together one or more modelled rooms
from the same hotel. It has the following additional proper-
ties: View Parameters which should be defined to give the
user the best view of the room models belonging to the ho-
tel, and Avatar Parameters which should describe the size

Figure 1. An overview of the Hotel Browser
System.

of the avatar such that it is in proportion with the room mod-
els belonging to the hotel.

A Room object defines data to generate a 3D model of
a hotel room or facility and groups together one or more
features which are contained within that room. Additional
properties include 3D Model Description Data which can
be used to construct a model for the user to view, Location
to determine the physical position of the room within the
hotel, Room Bounding Region which describes the physi-
cal volume in space occupied by the room, and View Po-
sition which defines a viewpoint within the room at which
the virtual tour should start (this might typically be set at
the doorway into the room). Figure 4 shows the definition
of a typical double bedroom (specified using the Database
Editor interface).

A Feature object defines a 3D model of a physical fea-
ture within a hotel room, such as a bed or a lamp-shade.
The additional properties are similar to a Room object and
provide 3D model description of the feature, its physical lo-
cation in the room, and the preferred viewpoint for showing
the feature to the user. Typically, moving the user to the
view position will generate a ’close-up’ of that feature.

The system user will submit control input through a user
interface displayed in their WWW browser. These controls
will enable the user to visualise the information stored in
the hotel database. Figure 1 also provides a schematic view



Figure 2. Hotel universe structure.

of the flow of data in the 3D Hotel Browser system.

5. Our Use of Java3D

This section briefly reviews some of those aspects of
Java3D used in this application which are regularly referred
to in the next sections of this paper. Central to Java3D, is
the scene graph method for describing the content and be-
haviour of objects in a 3D universe. The scene-graph ap-
proach to describing a 3D universe is not new, or unique to
Java3D. It has been used in various forms, perhaps most no-
tably in VRML [3, 4]. A scene graph in Java3D is a directed
acyclic graph [5]. The basic idea is that each object in the
feature of the universe is described by a node, or small col-
lection of nodes in the graph, sometimes called a group. The
exact state of a feature (i.e. its location, orientation, size,
etc.) is determined by the nodes traversed in the path from
the root of the scene graph to the feature’s node (or nodes).
We use the Java3D scene graph for various purposes one
of which is as part of a collision detection mechanism as
described later below.

Java3D introduces a new View model which aims to en-
sure compatibility of applications across a wide range of
visual hardware from simple desktop monitor screens to
full virtual reality head-mounted displays. Conventional 3D
APIs such as OpenGL utilise a camera-based view model
where the programmer has ultimate control and must imple-
ment the exact position, orientation and other view proper-
ties in order to render a scene. Java3D by contrast separates
the virtual property of the viewer’s position in the Virtual
Universe from physical display properties such as the num-
ber of screens, field of view or orientation of the viewer’s
head (for a head-mounted display). This is achieved within
the context of a scene graph. A View Platform leaf node

is provided which can be added into the scene graph, per-
haps below a Transform Group node to allow its position
and orientation to be altered by the application. Physical in-
formation about the user and the display hardware are then
accessed through special information objects. For more de-
tails on Java3D the reader is referred to [1].

6. Hotel Browser Application

The hotel browser consists of the View Display, Avatar
Control Panel, Hotel List, Room List and Feature Lists
components. It starts automatically when the user selects a
link on the appropriate Web page. The application appears
within the original Web browser window on the user’s com-
puter and loads a specific Hotel Group from the database
according to the exact link selected by the user. The user
will be given clear instructions at all times to assist them in
using the browser.

The functions supported by the browser are the selection
of a Hotel, selection of a Room, navigation between rooms
in the View Display part of the browser, selection of a Fea-
ture for detailed viewing, etc.

One novel idea is to allow the user to select the type of
features he/she requires (from the Features List) in order to
define the sort of room they would like to stay in at that
hotel. This means the room will be custom designed by
the user and will be prepared by the hotel management in
time for the user’s arrival. Better still, this idea could be
applied when users wish to specially arrange a conference
or seminar room in the hotel.

6.1. Tour Simulation Behaviour

The user should be able to explore the hotel models in a
manner similar to walking around a real hotel. This section
briefly specifies the behaviour of the system.

The parameters used to specify the view rendered from
a specific viewpoint in the hotel universe are the standard
Graphics viewpoint geometry parameters: the user Field Of
View Angle, the Front Plane, defined by a distance from
the view point beyond which objects become visible, and
the Back Plane, defined by a distance from the view point
beyond which objects become invisible. Only objects in the
visible region will be rendered and seen by the user.

The avatar description is used to determine how the user
interacts with the scene. It comprises height, depth and
width dimensions defining a bounding box approximation
of a human body, and gravity simulation. This bounding
box will be used to determine collisions between the avatar
and objects in the universe. A step height parameter is used
to determine the maximum height of objects above the base
of the bounding box which the avatar can step up onto. The
avatar and view parameters will be set on a per-hotel basis



according to the values specified for the current Hotel object
which describes the hotel being viewed.

Java3D supports the animation of 3D objects and user in-
teraction via the Behaviour leaf node. Behaviour nodes can
be used to capture keyboard or mouse input from the user
and manipulate (for example) the position of the View Plat-
form. Java3D provides various features which can be com-
bined with mouse events to support the picking of objects
in a 3D scene. Other uses of Behaviour nodes include con-
tinually modifying a Transform Group node to animate part
of a scene graph, altering the intensity of a light or starting
a sound node. A basic approach to user interaction support
through the Behaviour leaf node might be to implement a
Behaviour node which has a reference to the View Platform
Transform Group. This Behaviour would specify, for exam-
ple, a key press as its initial wake up condition. When the
user presses a key an event is generated which the Java3D
scheduler passes to the Behaviour node to notify it that the
wake up condition has been met. The Behaviour node can
examine the event generated by the key press and alter the
Transform Group matrix based on which key the user actu-
ally selected. To refine this solution further the Behaviour
node might alter its wake up condition after a key has been
pressed to be the disjunction of a key released event and
the elapsing of a single frame. The next time the sched-
uler awakes the Behaviour node, it can examine the wake
up condition satisfied. If a frame has elapsed then the Be-
haviour would repeat the last move made (still based on the
key which the user last pressed). If, alternatively, a key re-
leased event was generated by the user then the Behaviour
node ceases to alter the View Platform Transform Group,
and return its wake up condition to waiting for the next key
press. With this approach the user can hold down a key to
instruct the Behaviour node to repeat the same operation,
for example ’step forward’, several times.

When this system of control was implemented in a
test prototype two problems were highlighted. Firstly, bi-
nary (on/off) type inputs such as buttons and key presses
were not found to be user friendly when trying to navigate
through a 3D scene. This was due to the need in some cases
to travel quickly, in large steps, and at other times to travel
slowly. The naive control logic described above offers the
user only one speed of action. Secondly, and more fun-
damentally, a property of the Behaviour scheduler came to
light which is undesirable in this type of control system.
When rendering more complex models a tendency emerged
for the scheduler to ’lose’ Java Advanced Window Toolkit
(AWT) events. The result was that key released events
would not be received by the Behaviour node and motion
of the View Platform would therefore continue after user
actually requested it to cease.

A solution was devised for this project which combines
the use of the Java3D scheduler, a Behaviour node and the

Java1.1 AWT event model used in ’conventional’ Java win-
dow applications. User input events are detected using the
implementations of the Java AWT event listener interfaces
and custom developed user interface components. When the
user activates one of these components a Behaviour node
is notified directly by the component. This bypasses the
Java3D scheduler as the Behaviour no longer needs to spec-
ify AWT events in its wake up conditions. When a compo-
nent is activated the notified Behaviour node sets its wake
up condition to be one elapsed frame. The Java3D sched-
uler will then wake the Behaviour every frame allowing it to
move the View Platform according to the user’s exact input.

6.2. View Platform Collision Prevention

A fundamental issue in interactive applications such as
computer animation and virtual environments is collision
detection [6, 7]. When navigating a virtual scene, it is
reasonable for the user to expect that the View Platform
cannot pass through a solid object. Java3D offers fairly
comprehensive high-level support for collision detection in
which each object may define a region known as its colli-
sion bounds. These collision regions may be described as
simple box or sphere objects, or more complicated regions
comprising a combination of simple objects. According
to the Java3D specification, the Java3D renderer runs an
infinite loop consisting of the following operations:

while(true) f

1. Process Input
2. If (Request To Exit) break
3. Perform Behaviours
4. Traverse Scene Graph and Render

Visible Objects

g

What this brief description does not make clear is exactly
where the occurrence of collisions is calculated. Various
test applications written for the project suggest that the col-
lision calculations are performed as part of step 1. This was
deduced by the fact that if a Behaviour modifies part of the
scene graph such that a collision between two nodes occurs,
it is does not result in the interaction of any collision related
Behaviour nodes until the current frame has been rendered.
In practice this means that all collisions are rendered to the
screen before they are reported. This property is not unrea-
sonable given that if the actions of one Behaviour node were
able to stimulate another in the same frame a dead-lock situ-
ation could occur where competing Behaviours prevent the
renderer ever completing a frame.

Hence, since in Java3D all collisions are rendered to the
screen before they are reported, we have designed a “1-step



ahead” collision detection scheme to work alongside the
Java3D mechanism. In the context of this application, we
refer to this mechanism as Collision Prevention (rather than
Collision Detection). Since the requirement is to give ad-
vanced warning that the viewer is about to intersect an ob-
ject, collision prevention is a more appropriate action which
implicitly deals with collision detection.

It is not possible in Java3D to specify visible geometry
or collision bounds for a View Platform node. To enable
proper collision prevention, a separate geometric represen-
tation of the View Platform must be added as a separate
node to the View Platform’s Transform Group (Figure 3).
Collisions are then detected between this extra node, which
will retain a constant position with respect to the View Plat-
form. The “1-step ahead” scheme developed extends this
strategy further by separating the collision bounded object
completely from the View Platform, as shown in Figure 3.

View
Platform

View
PlatformShape3D Shape3D

Group
Transform

Group

Group Group
Transform Transform

Figure 3. (a) Conventional scene graph, (b)
Separating the transform of a View Platform
and its associated geometry and collision
bounds.

The View Behaviour node described in the previous sec-
tion is extended to control the two Transform Group nodes
now used. When user input generates a movement of the
View Platform, the new transformation is first applied to
the Transform Group of the collision bounded node while
the View Platform transformation remains unchanged. The
current frame is rendered and Java3D performs the colli-
sion calculations. If a collision is detected for the colli-
sion bounded node, then its transform is returned to that
of the View Platform. However, if no collision occurs, the
View Platform transform is set equal to that of the collision
bounded node. In the latter case when more user input is re-
ceived, the collision bounded node is moved on to the next
transformation.

The result of this system is that movement of the View
Platform lags one frame behind that of its associated col-
lision bounds. If a collision occurs for a specific transfor-

mation the View Platform is prevented from moving to that
position. Thus, Collision Prevention is achieved at the cost
of a one frame delay in the response of the View Platform
to the users commands.

Figure 4. Definition of a new Room object.

Finally, in Figure 5 we show a snapshot of a hotel tour in-
side a room. The use of Java3D has enabled the key sections
of the system to be independent of any 3D file format. It can
be extended easily to support other file formats. The Hotel
Browser is a good example of how simple HTML hypertext
links can be used within an intuitive and interactive applica-
tion user interface. In this case the distributed nature of the
information on the internet is “hidden” and referenced from
different features in a single hotel model.

7. Performance

At this stage in the development of Java3D much has
been said about its performance with most observers claim-
ing that it is exceptionally poor. The average duration of
a frame render has been used as a rough benchmark in the
development of this project, hence we measured the time
in milliseconds between successive frames when the user
moves the View Platform. By running the Editor applica-
tion using the same hotel model and performing approxi-
mately the same manoeuvres it has been possible to com-
pare the relative performance of different dev08 and Al-
pha01 implementations of Java3D. The results presented in
Table 1 suggest that, while it is slow, performance improve-
ments have been made in Java3D. The Just In-time Com-
piler (JIT) available for the JDK also provides a significant



Figure 5. A snapshot from a hotel tour inside
a room.

JDK Version Compiler Java3D version Time ms

JDK 1.1.5 Interpreter dev08 2800
JDK 1.1.5 JIT dev08 1490

JDK1.2 Beta3 Interpreter Alpha01 1760
JDK1.2 Beta3 JIT Alpha01 1270

Table 1. Performance comparison of various
Java3D versions

performance improvement, however at the time of writing
even the JDK1.1.5 JIT is specified as ’under development’
and is not 100% stable. All the timings in milliseconds were
recorded on a Pentium PC.

8. Conclusions & Future Work

In this case study, we have produced a full project plan
including the final specification (not specified fully here) for
a non-immersive VR application, namely a Hotel Browsing
system. Some key aspects of this work are as follows.

The definitions are generic for other browsing applica-
tions; for example whether a system is required by an Es-
tates Agent for viewing properties or a Car Dealership to
demonstrate the inside of a vehicle, the principles described

here will remain largely the same. Also, we have demon-
strated a novel combination of Java3D and VRML. VRML
was the ideal file format for this project as the Java3D scene
graph matches very closely with the VRML structure. This
correlation is likely to make it the preferred file format for
many developers, although Java3D was designed to remain
independent of any file format. Another novel method was
the “1-step ahead” scheme. This was an intuitive necessity
to comply with expected human movement in a virtual envi-
ronment and had to be specifically designed to work around
the Java3D provisions for collision detection. Finally, the
user interfaces in this project were designed for (manipula-
tion and visualisation of data by) non-VR experts.

All that remains is for the full system to be developed
based on future funding. The full system will benefit from a
greater range of Room types (to comprise the full hotel, i.e.
corridors, seminar room, swimming pool, Bar, etc...) and a
greater range of Feature objects. The future development of
Java3D will heavily influence the technical aspects of this
project.

Acknowledgements
The authors would like to thank Peter Gardner, Manager of
Royal Swallow Hotel, Bristol, UK, for discussions and al-
lowing us to measure rooms and other facilities in the hotel.

References

[1] Java3D. JavaSoft Java3D WWW Home Page.
http://www.javasoft.com/products/java-media/3D.

[2] Alias Wavefront WWW Home Page.
http://www.aw.sgi.com/.

[3] The VRML Consortium. The VRML Consortium
WWW Home Page. http://www.vrml.org/.

[4] A. L. Ames, D. R. Nadeau, and J. L. Moreland. The
VRML 2.0 Sourcebook. John Wiley & Sons, 1997.

[5] P.S. Strauss and R. Carey. An object-oriented 3d graph-
ics toolkit. In Proceedings of SIGGRAPH, pages 341–
349, 1992.

[6] K. Chung and W. Wang. Quick collision detection of
polytopes in virtual environments. In ACM Symposium
on Virtual Reality Software and Technology, pages 1–4,
1996.

[7] M. Lin and S. Gottschalk. Collision detection between
geometric models: A survey. In Proceedings of IMA
Conference on Mathematics of Surfaces, pages 33–52,
1998.


